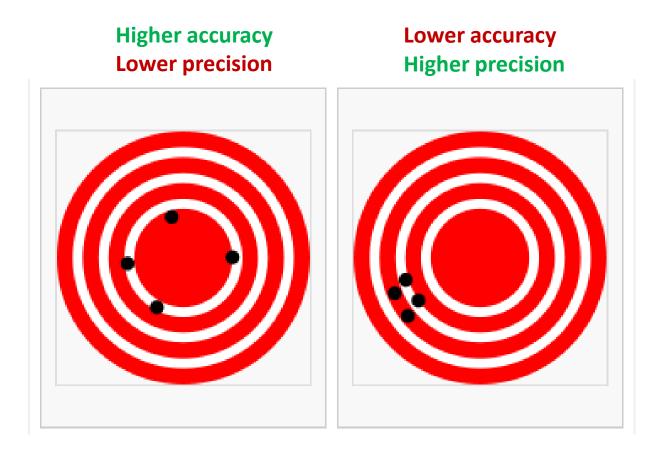
Geodatabase Development Considerations: Schemas, Attributes, and Metadata

Data Quality and Schemas

Data Quality

- When you create or acquire spatial data, you need to verify its quality before it can be used operationally.
- Two types of data quality assessment:
 - Accuracy: Ensuring your data correctly represent the specified location on the Earth's surface.
 - Integrity: Can encompass accuracy above but also includes data management and maintaining consistency during processing.



Accuracy and Precision

- Measures for assessing spatial data quality:
 - Accuracy: Agreement between a data point and its true location (reference value).
 - Precision: Number of significant figures stated in a value or the certainty with which a measurement is repeatable at a given location.
- Margin of error helps to quantify spatial error.
 - Determined by quality of digitization or field collection instruments.

Accuracy and Precision

Integrity

- Data integrity is a loosely defined concept focused on maintaining quality over the entire lifecycle of data.
 - From production to dissemination.
 - Ensuring data are not corrupted during processing.
 - Can also include protecting against inadvertent disclosure.
- Includes the design and maintenance of databases.
- ArcGIS includes a number of useful data integrity tools which we will explore in depth.
 - These tools help you manage both your attribute data and spatial data.

Data Schemas

- Depending on the context, a schema can be conceptual or physical architecture.
- A conceptual schema is much like a blueprint.
- Database schemas define the specific roles of each database object, including tables, fields, and relationships.
- Ideally, you should have a data management schema in place for your organization.
 - Helps you to visualize your datasets and their relationships.
 - Improves data quality by preventing repetition and desynchronization of attributes.

Developing a Data Schema

- In ArcGIS, your data schema will involve:
 - Identifying all of your geospatial datasets.
 - Listing and defining their attributes.
 - Establishing rules for the behavior of your geospatial and attribute data.
 - Determining the relationships between geospatial datasets and attribute tables.
- This schema also acts as your data dictionary.

Group Exercise

 Let's develop a hypothetical data schema for a census geodatabase.

- We need to list:
 - Feature classes (and feature datasets).
 - The attributes for each feature class.
 - Their appropriate behavior.
 - Their relationships.

Managing Attribute Quality in ArcGIS

Attribute Management

- The File Geodatabase includes a number of useful tools for managing your data attributes.
- These tools are meant to improve editing efficiency and also maintain data quality.
- For example, you can restrict a field to only a few specific values, such as "yes" or "no".
- These attribute management tools are distinct from the spatial data management tools, which we will discuss later.
- We access these tools with ArcCatalog.

Subtypes

- Subtypes: Rules for categorizing distinct features in the same feature class.
- Example: Roads.
 - Normally subject to a national transportation classification system, so only a few possible values.
 - E.g., "Trunk Road", "Primary Road", "Secondary Road", "Residential Street".
- With subtypes, we can automatically classify roads as we edit, saving time and improving data quality.

Domains

- Domains: Constraints which limit attribute values to a numerical range or a list of possibilities.
- **Example 1:** Population value in a province.
 - A province cannot have a negative population value.
 - If we also know that no province has a population greater than 10,000,000, we could set our domain range to 0-10,000,000.
- Example 2: Enumeration area status.
 - During census operations, a field worker could indicate whether enumeration is complete in an EA.
 - We could set a simple yes/no domain value with no other possibilities.
- We will go over subtypes and domains in detail during the exercises.

Metadata

Metadata

- Metadata is "data about data".
 - Traditional example of metadata: a library catalog.
- Stores information which describes a file's purpose, contents, methodology, and proper use.
- Critical for every dataset, whether geospatial or not.
- Unfortunately metadata are often lacking.

Reasons for Using Metadata

- Helps data users understand how to use a specific dataset properly.
- Provides a structured and consistent format useful for cataloging and organizing.
- Acts as institutional memory for data managers who may not revisit a particular dataset for a long time.
- Improves transparency and the ability to discover new data sources.

Metadata Components

- All metadata commonly includes:
 - Technical description such as file format, field names and meanings, methodology, and instructions for proper use.
 - Source/authorship of data.
 - Contact information for questions.
- Geospatial metadata can also include:
 - Spatial error, if known.
 - Spatial extent.
 - Coordinate system used.

Metadata Standards

- Several international organizations establish standards for metadata.
- The most common metadata standard is maintained by the International Organization for Standardization: ISO 19115 and ISO 19139.
 - The latter is a specification for XML, which is also a standard file format we discussed previously.

Metadata in ArcGIS

- Metadata in ArcGIS is managed in ArcCatalog.
- By default, can store metadata in several formats, including ISO 19139.

ArcCatalog Options					
Raster		CAD		FME	
General	File Types	Contents	Connections	Metadata	Tables
Metadata Style					
The style determines how metadata is viewed, exported, and validated, and which pages appear when editing metadata.					
ISO 191					
Metadata Updates					
An item's intrinsic properties such as its name or number of features can be updated automatically in the metadata.					
Automatically update when metadata is viewed.					
Metadata Upgrade Notification					
The internal storage format for metadata has changed. You can see FGDC-formatted metadata in the display as read-only information, but this content must be upgraded before it is available for editing.					
Show metadata upgrade prompt.					
About managing FGDC metadata					
			ОК	Cancel	Apply

Example of Raw XML Metadata

```
-<metadata>
```

```
-<idinfo>
```

```
-<citation>
```

```
-<citeinfo>
```

-<origin>

U.S. Department of Commerce, U.S. Census Bureau, Geography Division

</origin>

<pubdate>2013</pubdate>

-<title>

TIGER/Line Shapefile, 2013, nation, U.S., Current county and Equivlaent National Shapefile

</title>

<edition>2013</edition>

<geoform>vector digital data</geoform>

-<onlink>

http://www2.census.gov/geo/tiger/TIGER2013/COUNTY/tl_2013_us_county.zip

</onlink>

```
</citeinfo>
```

</citation>

```
-<descript>
```

-<abstract>

The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover

